Surrogate-Assisted Evolutionary Optimization Frameworks for High-Fidelity Engineering Design Problems
نویسندگان
چکیده
Over the last decade, Evolutionary Algorithms (EAs) have emerged as a powerful paradigm for global optimization of multimodal functions. More recently, there has been significant interest in applying EAs to engineering design problems. However, in many complex engineering design problems where high-fidelity analysis models are used, each function evaluation may require a Computational Structural Mechanics (CSM), Computational Fluid Dynamics (CFD) or Computational Electro-Magnetics (CEM) simulation costing minutes to hours of supercomputer time. Since EAs typically require thousands of function evaluations to locate a near optimal solution, the use of EAs often becomes computationally prohibitive for this class of problems. In this paper, we present frameworks that employ surrogate models for solving computationally expensive optimization problems on a limited computational budget. In particular, the key factors responsible for the success of these frameworks are discussed. Experimental results obtained on benchmark test functions and real-world complex design problems are presented.
منابع مشابه
A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems
Integrating data-driven surrogate models and simulation models of di erent accuracies (or delities) in a single algorithm to address computationally expensive global optimization problems has recently attracted considerable attention. However, handling discrepancies between simulation models with multiple delities in global optimization is a major challenge. To address it, the two major contrib...
متن کاملSurrogate-Based Optimization
Surrogate-based optimization (Queipo et al. 2005, Simpson et al. 2008) represents a class of optimization methodologies that make use of surrogate modeling techniques to quickly find the local or global optima. It provides us a novel optimization framework in which the conventional optimization algorithms, e.g. gradient-based or evolutionary algorithms are used for sub-optimization(s). Surrogat...
متن کاملMulti-Fidelity Multi-Objective Efficient Global Optimization Applied to Airfoil Design Problems
In this study, efficient global optimization (EGO) with a multi-fidelity hybrid surrogate model for multi-objective optimization is proposed to solve multi-objective real-world design problems. In the proposed approach, a design exploration is carried out assisted by surrogate models, which are constructed by adding a local deviation estimated by the kriging method and a global model approximat...
متن کاملEditorial—surrogate modeling and space mapping for engineering optimization
Advances in optimization technology, a cornerstone in engineering modeling, simulation-based design and manufacturing, continue to push back the boundaries of feasibility. Multi-disciplinary optimization continues to show success. Notwithstanding advances in computing power and user-friendly management of multidisciplinary software, challenging problems will undoubtedly continue to plague the d...
متن کاملOptimization by Gaussian Processes assisted Evolution Strategies
Evolutionary Algorithms (EA) are excellent optimization tools for complex high-dimensional multimodal problems. However, they require a very large number of problem function evaluations. In many engineering optimization problems, like high throughput material science or design optimization, a single fitness evaluation is very expensive or time consuming. Therefore, standard evolutionary computa...
متن کامل